Synthesis of (R)-6,7-dihydro-5-HETE lactone and (S)-6,7-dihydro-5-HETE lactone by using novel yeast reduction as a key reaction

Satoshi Yamauchi,* Kenji Takeda, Makoto Ganaha and Yoshiro Kinoshita
College of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime, 790-8566, Japan.
E-mail: syamauch@agr.ehime-u.ac.jp; Fax: +81-89-977-4364
Received (in Cambridge, UK) 12th July 2002, Accepted 6th August 2002
First published as an Advance Article on the web 30th August 2002

Novel yeast reduction which gave ($1 R, 2 S$)-hydroxy ester $\mathbf{1 0}$ and $(1 S, 5 S)$-lactone $\mathbf{1 1}$ from racemic ketoester $\mathbf{1 2}$ was discovered. After 10 and $\mathbf{1 1}$ were converted to lactone $\mathbf{1 5}$ and 17, enantiomeric excesses were determined as 99% and 95%, respectively. This novel yeast reduction was applied to synthetic study of metabolites of 5-oxo-ETE 1. (R)-6,7-Dihydro-5-HETE lactone 5 and (S)-6,7-dihydro-5-HETE lactone 6 were synthesized from 15 and 17, respectively.

Introduction

The metabolites of polyunsaturated fatty acid (PUFA) play an important role in organisms. However, their isolation is very difficult because they are present in very small quantities. Synthetic studies of PUFA metabolite are important for biological research and many synthetic efforts of PUFA have been carried out. ${ }^{1}$

5-Oxo-ETE 1 is a metabolite of arachidonic acid and has a potent chemotactic agent for human neutrophiles. 5-Oxo-ETE $\mathbf{1}$ is reduced to (R) and (S)-6,7-dihydro-5-HETE 3 and 4 via 6,7-dihydro-5-oxo-ETE 2 (Scheme 1). Though the synthesis and

6,7-dihydro-5-oxo-ETE 2

(R)-6,7-dihydro-5-HETE 3

(S)-6,7-dihydro-5-HETE 4

Scheme 1 Biosynthesis of (R)-6,7-dihydro-5-HETE 3 and (S)-6,7-dihydro-5-HETE 4.
biological activity of 6,7-dihydro-5-oxo-ETE 2 has been reported, ${ }^{2}$ there is no report about 6,7-dihydro-5-HETE 3 and 4. The synthetic study of both enantiomers is valuable for biological research and the construction of the one chiral center is interesting for synthetic research. A microbiological reduction is one of the effective methods to construct the chiral center. ${ }^{3,4}$ This report describes the synthesis of (R)-6,7-dihydro-5-HETE lactone 5 and (S)-6,7-dihydro-5-HETE lactone 6 using a new yeast reduction as a key reaction.

Scheme 2 shows the retrosynthetic analysis of $(R)-6,7-$ dihydro-5-HETE lactone 5 and (S)-6,7-dihydro-5-HETE lactone 6. Aldehyde $\mathbf{8}$ could be converted to target compound 5 by employing cis selective Wittig reaction with Wittig reagent

Scheme 2 Retrosynthetic analysis of (R)-6,7-dihydro-5-HETE lactone 5 and (S)-6,7-dihydro-5-HETE lactone 6.
7. ${ }^{2}$ This aldehyde $\mathbf{8}$ would be obtained from lactone $\mathbf{9}$ by one carbon homologation. Hydroxy ester 10 could be converted to lactone 9 by oxidation to the ketone followed by BaeyerVilliger oxidation, that proceeds with retention of configuration. In this way the stereogenic center at position 5 could be introduced stereospecifically. The planned starting materials for the two enantiomers are $(1 R, 2 S)$-hydroxy ester $\mathbf{1 0}$ and $(1 S, 5 S)$ lactone 11, obtained by a novel yeast reduction of racemic ketoester 12. The stereogenic center at C 5 of $(R)-\mathbf{5}$ or $(S)-\mathbf{6}$ derives from C 1 carbon of $\mathbf{1 0}$ or from C 5 carbon of $\mathbf{1 1}$. Therefore, it is necessary to obtain these adducts in high enantiomeric excess. As an example of bioreduction of cyclopentanone bearing a carboxylate group, the reduction of ethyl 2-oxocyclopentanecarboxylate has been previously reported. ${ }^{5}$ Our substrate has a longer carboxylate bearing side chain.

Results and discussion

At first, the yeast reduction of racemic ketoester $\mathbf{1 2}$ was examined in the preparation of the two optically active reductive products, which were expected to be the starting materials for this project. The incubation of racemic substrate $\mathbf{1 2}$ with
baker's yeast gave $(1 R, 2 S)$-hydroxy ester $\mathbf{1 0}^{6}(36 \%)$ and ($1 S, 5 S$)-latone $\mathbf{1 1}^{7}(27 \%)$. It is worth noting that two optically active products were obtained in this yeast reduction using our substrate. The enantiomeric excess was determined after Baeyer-Villiger oxidation. The yeast reductions of the substrates with longer side chain, 3-(2-oxocyclopentyl)propionic acid, 2-(2-methoxy/ethoxycarbonylethyl)cyclopentanone, did not proceed, recovering racemic substrates.

After LiAlH_{4} reduction of $\mathbf{1 0}$, the primary hydroxy group of the resulting diol was selectively protected as TBDPS ether by using TBDPSCl, $\mathrm{Et}_{3} \mathrm{~N}$, and 4-DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{8}$ to give 13 in 69% yield. This alcohol 13 was subjected to subsequent PCC oxidation (99%) and Baeyer-Villiger oxidation with MCPBA in CHCl_{3} and phosphate buffer $\mathrm{pH} 8^{9}$ to give (R)-lactone 15 in 84% yield (Scheme 3). By the same procedure, $(1 S, 5 S)$-lactone 11 was transformed to (S)-lactone 17.

Scheme 3 Reagents and conditions (yields): (a) i) LiAlH_{4}, diethyl ether, $-10^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii) TBDPSCl, $\mathrm{Et}_{3} \mathrm{~N}, 4-\mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 2 \mathrm{~h}(69 \%)$; (b) PCC, $\mathrm{AcONa}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-10^{\circ} \mathrm{C}, 17 \mathrm{~h}(99 \%)$; (c) MCPBA, phosphate buffer $\mathrm{pH} 8, \mathrm{CHCl}_{3}, 0^{\circ} \mathrm{C}, 17 \mathrm{~h}(84 \%)$.

To determine the enantiomeric excess, (R)-lactone $\mathbf{1 5}$ was converted to $\mathbf{1 8}$ by subsequent ethanolysis and reaction with (-)-menthyl chloroformate. HPLC analysis showed that diastereomeric excess was 99%. Diastereomeric excess of (S)-lactone 17 was also determined as 95% by the same method. These facts indicate that the 1 position of $\mathbf{1 0}$ and the 5 position of $\mathbf{1 1}$, which are the new yeast reductive products of 12, had high enantiomeric purity (Scheme 4).

Since desilylation of $\mathbf{1 5}$ gave many by-products, the lactone ring was opened at this stage. The lactone ring of $\mathbf{1 5}$ was reduced by subsequent DIBAL-H and NaBH_{4} reductions, giving diol 20 in 96% yield. After the primary and secondary hydroxy groups were protected as trityl ethers by using trityl chloride in pyridine (89%) and MOM ether by using MOMCl and iso- Pr_{2} NEt (88%), respectively, the silyl ether of the resulting fully protected compound 22 was cleaved by $n-\mathrm{Bu}_{4} \mathrm{NF}$ in 100% yield. The resulting alcohol 23 was treated with TsCl and KOH in diethyl ether to give tosylate 24 in 92% yield, and then conversion to nitrile $\mathbf{2 5}$ by using NaCN in DMF was performed in 100% yield. DIBAL-H reduction of nitrile 25 in ether gave aldehyde 26 in 76% yield. This resulting aldehyde $\mathbf{2 6}$ was subjected to cis-selective Wittig reaction with Wittig reagent 7 by using LHMDS and HMPA, ${ }^{2}$ giving triene 27 in 68% yield. Cleavage of trityl ether in $\mathrm{HCO}_{2} \mathrm{H}$-diethyl ether (71\%) following Swern and NaClO_{2} oxidations gave carboxylic acid 29 in 73% yield. Finally, cleavage of MOM ether in acidic condition gave (R)-6,7-dihydro-5-HETE lactone 5 in 92% yield (Scheme 5). By the same procedure, (S)-6,7-dihydro-5-HETE lactone 6 was synthesized from lactone 17.

18

Scheme 4 Determination of enantiomeric excess of 15 and 17.
As the synthetic study of the metabolites of 5-oxo-ETE 1, (R)-6,7-dihydro-5-HETE lactone 5 and (S)-6,7-dihydro-5HETE lactone 6 were synthesized. A new yeast reduction which gave $(1 R, 2 S)$-hydroxyester 10 and $(1 S, 5 S)$-lactone 11 from racemic ketoester $\mathbf{1 2}$ was discovered in this project. These compounds 10 and 11 were transformed to lactone 15 and 17 , which were 99% ee and 95% ee, respectively.
(R)-6,7-Dihydro-5-HETE lactone 5 and (S)-6,7-dihydro-5HETE lactone 6 were synthesized from lactone 15 and 17, respectively.

Experimental

Melting-point (mp) data are uncorrected. NMR data were measured by a JNM-EX 400 spectrometer. FABMS data were measured with JEOL HX-110 spectrometers and optical rotations were evaluated with Horiba SEPA-200, $[\alpha]_{\mathrm{D}}$-values are in units of $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$. The silica gel used was Wakogel C-300 (Wako, 200-300 mesh). HPLC analysis was performed by Shimadzu LC-6AD and SPD-6AV.

Yeast reduction of racemic ketoester 12

A mixture of (\pm)-ketoester $12(4.69 \mathrm{~g}, 0.030 \mathrm{~mol})$, sucrose $(30 \mathrm{~g})$, baker's yeast $(14 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(250 \mathrm{ml})$ was shaken at $30^{\circ} \mathrm{C}$ for 48 h . After the mixture was filtered, the filtrate was extracted with diethyl ether. The ether solution was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified with silica gel column chromatography ($10 \% \mathrm{EtOAc}$ in benzene) to give $(1 R, 2 S)$-hydroxy ester $10(1.69 \mathrm{~g}, 36 \%)$ as a colorless oil and $(1 S, 5 S)$-lactone $\mathbf{1 1}$ as a colorless oil $(1.02 \mathrm{~g}, 27 \%) .10:[\alpha]_{\mathrm{D}}^{20}$ $=+40.6, c 3.23$, MeOH (lit., $\left.{ }^{6}[\alpha]_{\mathrm{D}}^{23}=+43.1, c 1.08, \mathrm{MeOH}\right) .11$: $[a]_{\mathrm{D}}^{20}=-59.4, c 4.90, \mathrm{MeOH}\left(\right.$ lit., $\left.{ }^{7}[a]_{\mathrm{D}}^{25}=-59.0, c 1.00, \mathrm{MeOH}\right)$.
(1S,2R)-2-[2-(tert-Butyldiphenylsilyloxy)ethyl]cyclopentanol 13. To a suspension of $\mathrm{LiAlH}_{4}(3.80 \mathrm{~g}, 0.10 \mathrm{~mol})$ in diethyl ether $(50 \mathrm{ml})$ was added a solution of $(1 R, 2 S)$-hydroxy ester $10(17.2$ $\mathrm{g}, 0.11 \mathrm{~mol})$ in diethyl ether $(50 \mathrm{ml})$ at $-10^{\circ} \mathrm{C}$. After stirring at $-10{ }^{\circ} \mathrm{C}$ for 1 h , sat. aq. $\mathrm{MgSO}_{4}(c a .3 \mathrm{ml})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.1 \mathrm{~g})$ were added. The mixture was stirred at room temperature for 1 h and filtered. The filtrate was concentrated to give crude diol. To a solution of the crude diol, $\mathrm{Et}_{3} \mathrm{~N}(17.1 \mathrm{ml}, 0.12 \mathrm{~mol})$, and 4-DMAP $(0.50 \mathrm{~g}, 0.0041 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added TBDPSCl ($26.5 \mathrm{ml}, 0.10 \mathrm{~mol}$). The resulting reaction solution was stirred at room temperature for 2 h before additions of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After concentration, the residue was applied to silica gel column chromatography ($10 \% \mathrm{EtOAc}-$ hexane) to give silyl ether $13(28.1 \mathrm{~g}, 0.076 \mathrm{~mol}, 69 \%)$ as a colorless oil. $[a]_{\mathrm{D}}^{20}=+21.9\left(c 1.56, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3428, 2876, 1472, 1429, 1113, 1076, 1015; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.06(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{HCH}_{2} \mathrm{OTBDPS}\right), 1.58-1.72(5 \mathrm{H}$,

Scheme 5 Reagents and conditions (yields): (a) i) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-75^{\circ} \mathrm{C}, 30 \mathrm{~min}$; ii) $\mathrm{NaBH}, \mathrm{EtOH}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}(96 \%$); (b) TrCl , pyridine, rt, 2 h (89%); (c) MOMCl, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $16 \mathrm{~h}\left(88 \%\right.$); (d) n - $\mathrm{Bu}_{4} \mathrm{NF}$, THF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}(100 \%)$; (e) TsCl, KOH, diethyl ether, rt, $2.5 \mathrm{~h}(92 \%)$ (f) NaCN , DMF, $50{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}(100 \%)$; (g) DIBAL-H, ether, $-10^{\circ} \mathrm{C}, 1 \mathrm{~h}(76 \%)$; (h) 7, LHMDS, HMPA, THF, from $-75{ }^{\circ} \mathrm{C}$ (30 min) to rt (30 min) (68%); (i) $\mathrm{HCO}_{2} \mathrm{H}$, diethyl ether, $0^{\circ} \mathrm{C}, 30 \mathrm{~min}(71 \%)$; (j) i) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-45^{\circ} \mathrm{C}, 1 \mathrm{~h}$, and then $\mathrm{Et}_{3} \mathrm{~N}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii) 2-methylbut-2-ene, $\mathrm{NaH}_{2} \mathrm{PO}_{4}$, NaClO_{2}, aq. tert- BuOH , rt, $1 \mathrm{~h}(73 \%)$; (k) 6 M aq. $\mathrm{HCl}, \mathrm{THF}, \mathrm{rt}, 2 \mathrm{~h}(92 \%)$.
$\left.\mathrm{m}, 3-\mathrm{H}_{2}, 4-\mathrm{H}_{2}, \mathrm{CH} \mathrm{HCH}_{2} \mathrm{OTBDPS}\right), 1.72-1.86\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right)$, $1.97(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.31(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.73-3.80(2 \mathrm{H}, \mathrm{m}$, CH2OTBDPS), $3.82(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 7.38-7.44(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.67-7.68 (4H, m, ArH); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 19.1, 21.3, 26.8, 30.8, 33.7, 36.6, 47.1, 64.2, 78.9, 127.7, 129.8, 133.2, 135.6 (Found: C, 74.77; H, 8.98. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}$ requires C, $74.95 ; \mathrm{H}, 8.75 \%$).

(1S,2S)-2-[2-(tert-Butyldiphenylsilyloxy)ethyl]cyclopentanol

 16. To a suspension of $\mathrm{LiAlH}_{4}(3.00 \mathrm{~g}, 0.079 \mathrm{~mol})$ in diethyl ether (50 ml) was added a solution of $(1 S, 5 S)$-lactone $\mathbf{1 1}$ $(11.1 \mathrm{~g}, 0.079 \mathrm{~mol})$ in diethyl ether $(50 \mathrm{ml})$ at $-10{ }^{\circ} \mathrm{C}$. After stirring at $-10^{\circ} \mathrm{C}$ for 1 h , sat. aq. $\mathrm{MgSO}_{4}(c a .2 \mathrm{ml})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.1 \mathrm{~g})$ were added. The mixture was stirred at room temperature for 1 h and filtered. The filtrate was concentrated to give crude diol. To a solution of the crude diol, $\mathrm{Et}_{3} \mathrm{~N}(13.2 \mathrm{ml}, 0.095$ $\mathrm{mol})$, and 4-DMAP $(0.39 \mathrm{~g}, 0.0032 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added TBDPSCl ($20.6 \mathrm{ml}, 0.079 \mathrm{~mol}$). The resulting reaction mixture was stirred at room temperature for 2 h before additions of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After concentration, the residue was applied to silica gel column chromatography ($10 \% \mathrm{EtOAc}$-hexane) to give silyl ether $16(23.7 \mathrm{~g}, 0.064 \mathrm{~mol}$, $81 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=+8.73\left(c\right.$ 1.03, $\left.\mathrm{CHCl}_{3}\right)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3460,2934,1472,1429,1113,1084,1035$, $990 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.06\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.41\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{HCH}_{2}-\right.$ OTBDPS), $1.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{CH}_{2} \mathrm{OTBDPS}\right), 1.61-1.74(3 \mathrm{H}$, $\mathrm{m}), 1.76-1.92(4 \mathrm{H}, \mathrm{m}), 2.51(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.67(1 \mathrm{H}, \mathrm{m}$, CHHOTBDPS), 3.76 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H O T B D P S), 4.28(1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}), 7.39-7.44(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.66-7.69(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.0,22.4,26.8,29.9,32.0,34.4,44.8,64.2,74.1$, 127.7, 129.7, 133.2, 133.3, 135.6 (Found: C, 75.13; H, 8.96. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2}$ Si requires $\mathrm{C}, 74.95 ; \mathrm{H}, 8.75 \%$).(R)-2-[(2-tert-Butyldiphenylsilyloxy)ethyl]cyclopentanone 14. A reaction mixture of alcohol $13(27.0 \mathrm{~g}, 0.073 \mathrm{~mol}), \mathrm{PCC}(19.1$ $\mathrm{g}, 0.089 \mathrm{~mol}), \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}(6.65 \mathrm{~g}, 0.081 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200$ ml) was stirred at $-10^{\circ} \mathrm{C}$ for 17 h . After addition of dry diethyl ether, the mixture was filtered. The filtrate was concentrated. The residue was applied to silica gel column chromatography (EtOAc-hexane $1: 10$) to give ketone $14(26.4 \mathrm{~g}, 0.072 \mathrm{~mol}$, 99%) as a colorless oil, $[a]_{\mathrm{D}}^{20}=+59.4$ (c 1.01, CHCl_{3}); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2934,1732,1429,1111 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.04(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.41-1.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBDPS}\right), 1.75(1 \mathrm{H}$, $\mathrm{m}), 1.98(1 \mathrm{H}, \mathrm{m}), 2.07-2.33(5 \mathrm{H}, \mathrm{m}), 3.69(1 \mathrm{H}$, ddd, $J 10.3,7.6$, $5.6 \mathrm{~Hz}, \mathrm{CHHOTBDPS}), 3.77$ (1 H , ddd, J $10.3,6.4,6.4 \mathrm{~Hz}$, CHHOTBDPS), 7.36-7.44 (6H, m, ArH), 7.65-7.67 (4H, m,
$\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.2,20.8,26.8,29.7,32.5,37.9,46.3,62.1$, 127.6, 129.6, 133.8, 135.5, 221.3 (Found: C, 75.27; H, 8.48. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$ requires $\mathrm{C}, 75.36 ; \mathrm{H}, 8.25 \%$). (S)-isomer: $[a]_{\mathrm{D}}^{20}=$ -59.6 (c 1.34, CHCl_{3}).
(\boldsymbol{R})-7-(tert-Butyldiphenylsilyloxy)heptan-5-olide 15. To an ice-cooled mixture of ketone $14(24.6 \mathrm{~g}, 0.067 \mathrm{~mol})$ in CHCl_{3} $(50 \mathrm{ml})$ and phosphate buffer $\mathrm{pH} 8(100 \mathrm{ml})$ was added MCPBA $(23.3 \mathrm{~g}, 0.14 \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(50 \mathrm{ml})$. The resulting reaction mixture was stirred in an ice-bath for 17 h before additions of sat. aq. sodium thiosulfate and sat. aq. NaHCO_{3} soln. After the mixture was filtered, the organic solution was separated from the filtrate, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After concentration, the residue was applied to silica gel column chromatography (EtOAc-hexane $1: 8)$ to give lactone 15 (21.5 $\mathrm{g}, 0.056 \mathrm{~mol}, 84 \%$) as a colorless oil, $[\alpha]_{\mathrm{D}}^{20}=-28.2$ (c 1.70, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2932,1727,1429,1246,1113,1094$, $1057 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.53(1 \mathrm{H}, 6-\mathrm{HH})$, $1.77-1.98\left(5 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}, 4-\mathrm{H}_{2}, 6-\mathrm{HH}\right), 2.42(1 \mathrm{H}$, ddd, $J 17.6$, $8.3,8.3 \mathrm{~Hz}, 2-H \mathrm{H}), 2.56(1 \mathrm{H}, \mathrm{ddd}, J 17.6,7.3,7.3 \mathrm{~Hz}$, $2-\mathrm{H} H), 3.78(1 \mathrm{H}$, ddd, $J 10.3,5.9,5.9 \mathrm{~Hz}, 7-H \mathrm{H}), 3.90$ $(1 \mathrm{H}$, ddd, $J 10.3,7.1,4.9 \mathrm{~Hz}, 7-\mathrm{HH}), 4.52(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, 7.36-7.44 (6H, m, ArH), 7.63-7.67 (4H, m, ArH); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $18.5,19.2,26.9,27.9,29.4,38.6,59.6,77.4,127.7,129.7,133.5$, 133.7, 135.5, 171.8 (Found: C, 71.86; H, 8.04. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 72.21 ; \mathrm{H}, 7.90 \%)$. (S)-isomer $17:[\alpha]_{\mathrm{D}}^{20}=+28.3$ (c $1.10, \mathrm{CHCl}_{3}$).

Determination of enantiomeric excess

A reaction mixture of lactone $15(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(18 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{ml})$ was stirred at room temperature for 2 h before additions of $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The organic solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation gave crude ethyl ester. To an ice-cooled solution of the crude ethyl ester in pyridine $(0.2 \mathrm{ml})$ was added (-)-menthyl chloroformate $(0.030 \mathrm{ml}, 0.14 \mathrm{mmol})$. The resulting reaction solution was stirred at room temperature for 2 h before addition of $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The organic solution was separated, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give crude 18, which was applied to HPLC (LiChrospher Si 60 of Cica-MERK, 3\% EtOAc in hexane, 2 ml $\min ^{-1}$, detected at 270 nm): retention time was 12.3 min , diastereomeric excess was 99%. Lactone 17 was converted to 19 by the same procedure and applied to HPLC: retention time was 11.1 min , diastereomeric excess was 95%.
(\boldsymbol{R})-7-(tert-Butyldiphenylsilyloxy)heptane-1,5-diol 20. To a solution of lactone $\mathbf{1 5}(10.0 \mathrm{~g}, 0.026 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{ml})$ was added DIBAL-H (1 M in toluene, $44.6 \mathrm{ml}, 0.045 \mathrm{~mol}$) at $-75^{\circ} \mathrm{C}$. After the reaction solution was stirred at $-75^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, 6 \mathrm{M}$ aq. HCl soln. was added. The organic solution was separated, washed with sat. aq. NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give crude hemiacetal. To an icecooled solution of the hemiacetal in $\mathrm{EtOH}(150 \mathrm{ml})$ was added $\mathrm{NaBH}_{4}(0.75 \mathrm{~g}, 0.020 \mathrm{~mol})$. The reaction mixture was stirred in an ice-bath for 30 min before addition of 6 M aq. HCl solution. After neutralization with sat. aq. NaHCO_{3}, the mixture was concentrated. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The organic solution was separated, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was applied to silica gel column chromatography (EtOAc-hexane $1: 1$) to give diol $20(9.59 \mathrm{~g}, 0.025 \mathrm{~mol}, 96 \%)$ as colorless crystals, $\mathrm{mp} 88-89^{\circ} \mathrm{C}$ (iso- $\mathrm{Pr}_{2} \mathrm{O}$), $[a]_{\mathrm{D}}^{20}=+5.3\left(c 0.75, \mathrm{CHCl}_{3}\right)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3500$, 2934, 1429, 1113, 1078; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.46-$ $1.59\left(6 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}, 3-\mathrm{H}_{2}, 4-\mathrm{H}_{2}\right), 1.60-1.69\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.34$ $(2 \mathrm{H}, \mathrm{brs}, \mathrm{OH} \times 2), 3.64-3.67\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 3.84-3.89(3 \mathrm{H}, \mathrm{m}$, $\left.5-\mathrm{H}, 7-\mathrm{H}_{2}\right), 7.40-7.44(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.66-7.68$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.0,21.7,26.8,32.7,37.1,38.3,62.8,63.6,71.8$, 127.8, 129.8, 132.9, 135.5 (Found: C, $71.23 ; \mathrm{H}_{2} 8.74 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 71.46$; H, $8.86 \%)$. (S)-isomer: $[a]_{\mathrm{D}}^{20}=-5.3(c 1.12$, CHCl_{3}.
(R)-1-(tert-Butyldiphenylsilyloxy)-7-trityloxyheptan-3-ol 21. A solution of diol $20(6.77 \mathrm{~g}, 0.018 \mathrm{~mol})$ and $\mathrm{TrCl}(4.90 \mathrm{~g}$, 0.018 mol) in pyridine (10 ml) was stirred at room temperature for 2 h before additions of $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The organic solution was separated, washed with sat. aq. $\mathrm{CuSO}_{4}, \mathrm{NaHCO}_{3}$, and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified with silica gel column chromatography (5% EtOAc-hexane) to give trityl ether $21(10.1 \mathrm{~g}, 0.016 \mathrm{~mol}, 89 \%)$ as a colorless oil, $[a]_{\mathrm{D}}^{20}=+3.5\left(c 1.14, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3500,3073$, 2934, 1449, 1429, 1113, 1078; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.38-1.42 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$), 1.45-1.57 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}$), 1.63-1.74 $\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}, 6-\mathrm{H}_{2}\right), 3.06\left(2 \mathrm{H}, \mathrm{t}, J 6.6 \mathrm{~Hz}, 7-\mathrm{H}_{2}\right), 3.18(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}), 3.82-3.88\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}, 3-\mathrm{H}\right), 7.19-7.29(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.37-7.45 (12H, m, ArH), 7.66-7.68 (4H, m, ArH$) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $19.0,22.3,26.8,30.1,37.4,38.3,63.6,71.7,86.3,126.8,127.7$, 127.8, 129.8, 133.1, 135.5, 135.6, 144.5 (Found: C, 79.97; H, 7.92. $\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 80.21 ; \mathrm{H}, 7.69 \%$). (S)-isomer: $[a]_{\mathrm{D}}^{20}=-3.6\left(c 1.10, \mathrm{CHCl}_{3}\right)$.

(R)-1-(tert-Butyldiphenylsilyloxy)-3-methoxymethoxy-7-

trityloxyheptane 22. To a mixture of alcohol $21(10.1 \mathrm{~g}, 0.016$ $\mathrm{mol})$ and DIPEA ($11.2 \mathrm{ml}, 0.064 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added $\mathrm{MOMCl}(2.44 \mathrm{ml}, 0.032 \mathrm{~mol})$. After the reaction mixture was stirred at room temperature for $16 \mathrm{~h}, \mathrm{MeOH}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added. The organic solution was separated, washed with 6 M aq. $\mathrm{HCl}, \mathrm{NaHCO}_{3}$, and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified with silica gel column chromatography (5% EtOAc-hexane) to give MOM ether $22(9.40 \mathrm{~g}$, $0.014 \mathrm{~mol}, 88 \%)$ as a colorless oil, $[a]_{\mathrm{D}}^{20}=-2.8\left(\right.$ c $\left.1.08, \mathrm{CHCl}_{3}\right)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3071,2934,1491,1474,1462,1449,1429$, 1111, 1090, 1036; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30-1.50$ $\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}, 5-\mathrm{H}_{2}\right), 1.59-1.64\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 1.68-1.73(2 \mathrm{H}, \mathrm{m}$, $\left.2-\mathrm{H}_{2}\right), 3.04\left(2 \mathrm{H}, \mathrm{t}, J 6.6 \mathrm{~Hz}, 7-\mathrm{H}_{2}\right), 3.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.68-$ $3.78\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}, 3-\mathrm{H}\right), 4.56(1 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, \mathrm{OCHHOCH})$, $4.59\left(1 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{OCH}_{3}\right), 7.19-7.30(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.34-7.40 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.43-7.45 (6H, m, ArH), 7.63-7.66 $(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 19.2,22.0,26.9,30.2,34.6,37.3,55.4$, 60.6, 63.5, 74.7, 86.3, 95.6, 126.8, 127.6, 127.7, 128.7, 129.6, 133.9, 135.5, 144.5 (Found: C, 78.70; H, 8.01. $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{Si}$ requires C, $78.53 ; \mathrm{H}, 7.79 \%)$. (S)-isomer: $[a]_{\mathrm{D}}^{20}=+2.8$ (c 2.58, CHCl_{3}.
(\boldsymbol{R})-3-Methoxymethoxy-7-trityloxyheptan-1-ol 23. To an icecooled solution of silyl ether $22(9.40 \mathrm{~g}, 0.014 \mathrm{~mol})$ in THF
$(80 \mathrm{ml})$ was added $n-\mathrm{Bu}_{4} \mathrm{NF}(1 \mathrm{M} \mathrm{THF}, 15.4 \mathrm{ml}, 0.015 \mathrm{~mol})$. The resulting reaction solution was stirred in an ice-bath for 1 h before additions of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and EtOAc. The organic solution was separated, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was applied to silica gel column chromatography (EtOAc-hexane 1:7) to give alcohol 23 $(6.00 \mathrm{~g}, 0.014 \mathrm{~mol}, 100 \%)$ as a colorless oil, $[a]_{\mathrm{D}}^{20}=-28.0(c 1.07$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3500,2943,1491,1449,1151,1090$, 1075, 1032, 920; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37-1.49\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH}, 5-\mathrm{H}_{2}\right)$, $1.51-1.70\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{HH}, 4-\mathrm{H} H, 6-\mathrm{H}_{2}\right), 1.80(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{HH})$, $2.37(1 \mathrm{H}, \mathrm{br}$ s, OH$), 3.06\left(2 \mathrm{H}, \mathrm{t}, J 6.3 \mathrm{~Hz}, 7-\mathrm{H}_{2}\right), 3.38(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.60-3.83\left(3 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}, 3-\mathrm{H}\right), 4.63(1 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}$, $\mathrm{OCHHOCH} 3), 4.66\left(1 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{OCH}_{3}\right), 7.20-7.31$ ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.42-7.44 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 22.0,30.1$, $34.4,36.6,55.8,59.9,63.3,76.4,86.3,95.9,126.8,127.7,128.7$, 144.4 (Found: C, $77.57 ; \mathrm{H}, 8.03 . \mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{4}$ requires C, $77.39 ; \mathrm{H}$, $7.89 \%)$. (S)-isomer: $[a]_{\mathrm{D}}^{20}=+28.0\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

(R)-3-Methoxymethoxy-1-(p-tolylsulfonyloxy)-7-trityloxy-

heptane 24. A reaction mixture of alcohol $23(5.15 \mathrm{~g}, 0.012$ $\mathrm{mol})$, $\mathrm{TsCl}(2.71 \mathrm{~g}, 0.014 \mathrm{~mol})$, and pulverized $\mathrm{KOH}(1.33 \mathrm{~g}$, $0.024 \mathrm{~mol})$ in diethyl ether (50 ml) was stirred at room temperature for 2.5 h before addition of $\mathrm{H}_{2} \mathrm{O}$. The organic solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After concentration, the residue was applied to silica gel column chromatography (EtOAc-hexane 1:5) to give tosylate 24 (6.67 $\mathrm{g}, 0.011 \mathrm{~mol}, 92 \%)$ as a colorless oil, $[a]_{\mathrm{D}}^{20}=-7.9$ (c 1.01, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3063,2942,1599,1491,1449,1360$, $1190,1177,1098,1036,960,920 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.30-1.41(3 \mathrm{H}, \mathrm{m}$, $\left.5-\mathrm{H}_{2}, 4-\mathrm{HH}\right), 1.45(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H} H), 1.55-1.62\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, $1.77(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{HH}), 1.84(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H} H), 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OSO}_{2}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 3.04\left(2 \mathrm{H}, \mathrm{t}, J 6.8 \mathrm{~Hz}, 7-\mathrm{H}_{2}\right), 3.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.57(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.08-4.18\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 4.50(1 \mathrm{H}, \mathrm{d}, J 6.8$ $\mathrm{Hz}, \mathrm{OCHHOCH} 3), 4.53\left(1 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{OCH}_{3}\right), 7.20-$ $7.33(11 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.41-7.44(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.78(2 \mathrm{H}, \mathrm{d}, J 8.3$ $\mathrm{Hz}, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 21.6,21.7,30.0,33.8,34.3,55.6,63.3$, $67.5,74.1,86.3,95.8,126.8,127.7,127.9,128.6,129.8,133.2$, 144.4, 144.7 (Found: C, $71.23 ; \mathrm{H}, 7.02 . \mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{~S}$ requires C, $71.40 ; \mathrm{H}, 6.85 \%)$. (S)-isomer: $[a]_{\mathrm{D}}^{20}=+7.9\left(c 1.00, \mathrm{CHCl}_{3}\right)$.
(R)-4-Methoxymethoxy-8-trityloxyoctanenitrile 25. A reaction mixture of tosylate $24(6.67 \mathrm{~g}, 0.011 \mathrm{~mol})$ and NaCN $(1.67 \mathrm{~g}, 0.034 \mathrm{~mol})$ in DMSO $(5 \mathrm{ml})$ was heated at $50^{\circ} \mathrm{C}$ for 2 h before additions of EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation and silica gel column chromatography (EtOAc-hexane $1: 5$) gave nitrile $25(4.68 \mathrm{~g}, 0.011 \mathrm{~mol}, 100 \%)$ as a colorless oil, $[a]_{\mathrm{D}}^{20}=$ -20.6 (c 1.07, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3063,2940,1491$, 1449, 1219, 1152, 1090, 1076, 1036; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 1.35-1.46 (3H, $\left.\mathrm{m}, 5-\mathrm{HH}, 6-\mathrm{H}_{2}\right), 1.50-1.58(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H} H), 1.59-1.66(2 \mathrm{H}, \mathrm{m}$, $\left.7-\mathrm{H}_{2}\right), 1.77(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{HH}), 1.87(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H} H), 2.41(2 \mathrm{H}, \mathrm{t}$, $\left.J 7.8 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 3.06\left(2 \mathrm{H}, \mathrm{t}, J 6.6 \mathrm{~Hz}, 8-\mathrm{H}_{2}\right), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.60\left(1 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, \mathrm{OC} H \mathrm{HOCH}_{3}\right), 4.64$ $\left(1 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, \mathrm{OCH} \mathrm{HOCH}_{3}\right), 7.20-7.31(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42-$ $7.44(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.2,21.8,30.0,30.1,33.7,55.8$, 63.1, 75.8, 86.4, 95.8, 119.8, 126.9, 127.7, 128.6, 144.4 (Found: C, 78.55; H, 7.65; N, 2.87. $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{~N}$ requires C, 78.52; H, $7.50 ; \mathrm{N}, 3.16 \%) .(S)$-isomer: $[a]_{\mathrm{D}}^{20}=+20.5\left(c 1.12, \mathrm{CHCl}_{3}\right)$.
(\boldsymbol{R})-4-Methoxymethoxy-8-trityloxyoctanal 26. To a solution of nitrile $25(3.23 \mathrm{~g}, 7.28 \mathrm{mmol})$ in diethyl ether (10 ml) was added DIBAL-H (1 M toluene, $16.7 \mathrm{ml}, 16.7 \mathrm{mmol}$) at $-10^{\circ} \mathrm{C}$. After stirring at $-10^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, \mathrm{MeOH}(2 \mathrm{ml})$, a few drops of $\mathrm{H}_{2} \mathrm{O}$, and toluene (3 ml) were added, and then the mixture was stirred at room temperature for 30 min before filtration. The filtrate was concentrated. The residue was applied to silica gel column chromatography (EtOAc-hexane 1:5) to give aldehyde $26(2.48 \mathrm{~g}, 5.55 \mathrm{mmol}, 76 \%)$ as a colorless oil, $[a]_{\mathrm{D}}^{20}=-19.9$ (c 1.01, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3063,2940,1725,1491$, $1449,1152,1090,1076,1036 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.35-1.48(3 \mathrm{H}, \mathrm{m}$,
$\left.5-H \mathrm{H}, 6-\mathrm{H}_{2}\right), 1.48-1.57(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H} H), 1.58-1.68(2 \mathrm{H}, \mathrm{m}$, $\left.7-\mathrm{H}_{2}\right), 1.75(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{HH}), 1.88(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H} H), 2.49(2 \mathrm{H}, \mathrm{t}$, $\left.J 7.3 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 3.06\left(2 \mathrm{H}, \mathrm{t}, J 6.3 \mathrm{~Hz}, 8-\mathrm{H}_{2}\right), 3.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.55(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 7.20-7.36(9 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.42-7.44(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 9.76(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $22.0,26.5,30.0,34.1,39.8,55.7,63.3,76.5,86.3,95.5,126.8$, 127.7, 128.7, 144.4, 202.2 (Found: C, 77.88; H, 7.82. $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{4}$ requires C, 78.00 ; H, 7.67\%). (S)-isomer: $[a]_{\mathrm{D}}^{20}=+20.0(c 0.90$, CHCl_{3}.

($6 Z, 9 Z, 12 Z, 16 R$)-16-Methoxymethoxy-20-trityloxyicosa-

6,9,12-triene 27. To a solution of Wittig reagent $7(6.82 \mathrm{~g}, 13.4$ mmol) in THF (120 ml) was added LHMDS (1 M THF , 9.00 $\mathrm{ml}, 9.00 \mathrm{mmol}$) at $-75^{\circ} \mathrm{C}$, and then the reaction solution was stirred at $-75^{\circ} \mathrm{C}$ for 2 h before additions of HMPA (7 ml) and aldehyde $26(2.00 \mathrm{~g}, 4.48 \mathrm{mmol})$ in THF (50 ml). The reaction solution was stirred at $-75{ }^{\circ} \mathrm{C}$ for 30 min and gradually warmed to room temperature. After stirring at rt for 30 min , THF- $\mathrm{H}_{2} \mathrm{O}(1: 1)$ and CHCl_{3} were added. The organic solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation and silica gel column chromatography (5% EtOAchexane) gave triene $27(1.82 \mathrm{~g}, 3.06 \mathrm{mmol}, 68 \%)$ as a colorless oil, $[a]_{\mathrm{D}}^{20}=-4.6\left(c 1.09, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2932,1491$, 1449, 1150, 1090, 1075, 1038; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.88(3 \mathrm{H}, \mathrm{t}, J 6.8 \mathrm{~Hz}$, $\left.1-\mathrm{H}_{3}\right), 1.22-1.40\left(6 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}, 3-\mathrm{H}_{2}, 4-\mathrm{H}_{2}\right), 1.40-1.58(4 \mathrm{H}, \mathrm{m}$, $\left.17-\mathrm{H}_{2}, 18-\mathrm{H}_{2}\right), 1.50-1.58\left(2 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}_{2}\right), 1.60-1.67(2 \mathrm{H}, \mathrm{m}$, $\left.19-\mathrm{H}_{2}\right), 2.02-2.07\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 2.09-2.13\left(2 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}_{2}\right)$, $2.77-2.83\left(4 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}, 11-\mathrm{H}_{2}\right), 3.06\left(2 \mathrm{H}, \mathrm{t}, J 6.3 \mathrm{~Hz}, 20-\mathrm{H}_{2}\right)$, $3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.53(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 4.64(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.34-5.37(6 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 7-\mathrm{H}, 9-\mathrm{H}, 10-\mathrm{H}, 12-\mathrm{H}$, $13-\mathrm{H}), 7.19-7.30(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42-7.44(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.1,22.1,22.6,23.1,25.6,27.2,29.3,30.2,31.5$, $34.2,34.3,55.5,63.5,77.1,86.3,95.5,126.8,127.6,127.7,128.1$, 128.5, 128.7, 129.8, 130.5, 144.5 (Found: C, 82.45 ; H, 9.08 $\mathrm{C}_{41} \mathrm{H}_{54} \mathrm{O}_{3}$ requires C, $82.78 ; \mathrm{H}, 9.15 \%$). (S)-isomer: $[a]_{\mathrm{D}}^{20}=+4.7$ (c $1.07, \mathrm{CHCl}_{3}$).
($5 R, 8 Z, 11 Z, 14 Z$)-5-Methoxymethoxyicosa-8,11,14-trien-1-ol 28. To an ice-cooled solution of trityl ether $27(0.85 \mathrm{~g}, 1.43$ mmol) in diethyl ether (20 ml) was added $\mathrm{HCO}_{2} \mathrm{H}(15 \mathrm{ml})$. After the reaction solution was stirred in an ice-bath for 30 min , diethyl ether and $\mathrm{H}_{2} \mathrm{O}$ were added. The organic solution was separated, washed with sat. aq. NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified with silica gel column (EtOAc-hexane 1:4) to give alcohol $28(0.36 \mathrm{~g}, 1.02$ $\mathrm{mmol}, 71 \%)$ as a colorless oil, $[a]_{\mathrm{D}}^{20}=-6.9\left(c 1.16, \mathrm{CHCl}_{3}\right)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3715,2874,1460,1453,1148,1100,1038 ;$ $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{t}, J 6.8 \mathrm{~Hz}, 20-\mathrm{H}_{3}\right), 1.24-1.40(6 \mathrm{H}, \mathrm{m}, 17-$ $\left.\mathrm{H}_{2}, 18-\mathrm{H}_{2}, 19-\mathrm{H}_{2}\right), 1.40-1.47\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}, 4-\mathrm{HH}\right), 1.50-1.62$ ($5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}, 4-\mathrm{HH}, 6-\mathrm{H}_{2}$), 2.03-2.08 ($2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}$), 2.12-2.15 $\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 2.77-2.83\left(4 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{2}, 13-\mathrm{H}_{2}\right), 3.39(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.56(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.65\left(2 \mathrm{H}, \mathrm{t}, J 6.6 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 4.66$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OC} \mathrm{H}_{2} \mathrm{OCH}_{3}\right), 5.33-5.43(6 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}, 9-\mathrm{H}, 11-\mathrm{H}, 12-\mathrm{H}$, $14-\mathrm{H}, 15-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.0,21.4,22.5,23.1,25.6,27.2,29.3$, $31.5,32.8,34.1,34.3,55.5,62.8,77.2,95.6,127.6,128.0,128.2$, 128.5, 129.7, 130.5; m/z (FAB) $375\left(\mathrm{M}+\mathrm{Na}^{+}, 100\right), 173$ (53) [Found (HRMS): $\mathrm{M}+\mathrm{Na}^{+}$, 375.2869. $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Na}$ requires M $\left.+\mathrm{Na}^{+}, 375.2875\right] .(S)$-isomer: $[a]_{\mathrm{D}}^{20}=-7.0\left(c 1.01, \mathrm{CHCl}_{3}\right)$.
($5 R, 8 Z, 11 Z, 14 Z$,)-5-Methoxymethoxyicosa-8,11,14-trienoic acid 29. To a solution of $(\mathrm{COCl})_{2}(0.19 \mathrm{ml}, 2.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ was added DMSO ($0.21 \mathrm{ml}, 2.96 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{ml})$ and alcohol $28(0.36 \mathrm{~g}, 1.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{ml})$ at $-75^{\circ} \mathrm{C}$. The reaction solution was warmed to $-45^{\circ} \mathrm{C}$, and then stirred for 1 h before addition of $\mathrm{Et}_{3} \mathrm{~N}(1.03 \mathrm{ml}, 7.39$ $\mathrm{mmol})$. After the reaction solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added. The organic solution was separated, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concen-
trated to give crude aldehyde. A reaction mixture of the crude aldehyde, 2-methylbut-2-ene ($0.47 \mathrm{ml}, 4.44 \mathrm{mmol}$), $\mathrm{NaH}_{2}-$ $\mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.16 \mathrm{~g}, 1.01 \mathrm{mmol})$, and $\mathrm{NaClO}_{2}(0.31 \mathrm{~g}, 3.44$ $\mathrm{mmol})$ in tert- $\mathrm{BuOH}(2 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{ml})$ was stirred at room temperature for 1 h before additions of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and EtOAc. The organic solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation, the residue was purified with silica gel column chromatography (EtOAc-hexane $1: 3)$ to give carboxylic acid $29(0.27 \mathrm{~g}, 0.74 \mathrm{mmol}, 73 \%)$ as a colorless oil, $[a]_{\mathrm{D}}^{20}=+7.7\left(c 1.55, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3510, 2930, 1709, 1456, 1148, 1102, 1036; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.89(3 \mathrm{H}$, $\left.\mathrm{t}, J 6.4 \mathrm{~Hz}, 20-\mathrm{H}_{3}\right), 1.25-1.40\left(6 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}_{2}, 18-\mathrm{H}_{2}, 19-\mathrm{H}_{2}\right)$, $1.51-1.62\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}, 6-\mathrm{H}_{2}\right), 1.65-1.80\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 2.00-$ $2.08\left(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}\right), 2.08-2.18\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 2.38(2 \mathrm{H}, \mathrm{t}, J 7.3$ $\left.\mathrm{Hz}, 2-\mathrm{H}_{2}\right), 2.77-2.83\left(4 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{2}, 13-\mathrm{H}_{2}\right), 3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.57(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.28-5.43(6 \mathrm{H}, \mathrm{m}$, $8-\mathrm{H}, 9-\mathrm{H}, 11-\mathrm{H}, 12-\mathrm{H}, 14-\mathrm{H}, 15-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.0,20.5,22.5$, 23.1, 25.6, 27.2, 28.3, 29.3, 31.5, 33.6, 33.8, 34.2, 55.6, 77.2, 95.6, 127.6, 128.0, 128.3, 128.5, 129.5, 130.5, 178.2; m/z (FAB) $389\left(\mathrm{M}+\mathrm{Na}^{+}, 100\right), 365$ (79) [Found (HRMS): $\mathrm{M}+\mathrm{Na}^{+}$, 389.2670. $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Na}$ requires $\mathrm{M}+\mathrm{Na}^{+}$, 389.2668]. (S)isomer: $[a]_{\mathrm{D}}^{20}=-7.6\left(c 1.06, \mathrm{CHCl}_{3}\right)$.
($5 R, 8 Z, 11 Z, 14 Z)$-Icosa-8, 11, 14-trien-5-olide (R)-6,7-dihydro-5-HETE lactone) 5. A reaction solution of MOM ether $29(43 \mathrm{mg}, 0.12 \mathrm{mmol})$ in THF (3 ml) and $6 \mathrm{Maq} . \mathrm{HCl}(3 \mathrm{ml})$ was stirred at room temperature for 2 h . After additions of $\mathrm{H}_{2} \mathrm{O}$ and EtOAc, the organic solution was separated, washed with sat. aq. NaHCO_{3} and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After concentration, the residue was applied to silica gel column chromatography (EtOAc-hexane 1:5) to give lactone $5(33 \mathrm{mg}, 0.11$ $\mathrm{mmol}, 92 \%)$ as a colorless oil, $[a]_{\mathrm{D}}^{20}=-36.0\left(c 0.75, \mathrm{CHCl}_{3}\right)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2930,1728,1464,1445,1375,1345,1329$, $1248,1178,1053,909 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{t}, J 6.8 \mathrm{~Hz}, 20-\mathrm{H}_{3}\right)$, $1.24-1.40\left(6 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}_{2}, 18-\mathrm{H}_{2}, 19-\mathrm{H}_{2}\right), 1.54(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH})$, $1.63(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H} H), 1.75-1.86\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 1.87-1.93(2 \mathrm{H}, \mathrm{m}$, $\left.3-\mathrm{H}_{2}\right), 2.03-2.08\left(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}_{2}\right), 2.21-2.26\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 2.44$ $(1 \mathrm{H}$, ddd, $J 17.6,8.8,6.8 \mathrm{~Hz}, 2-\mathrm{HH}), 2.58(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{HH})$, $2.79-2.84\left(4 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{2}, 13-\mathrm{H}_{2}\right), 4.29(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.30-5.45$ $(6 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}, 9-\mathrm{H}, 11-\mathrm{H}, 12-\mathrm{H}, 14-\mathrm{H}, 15-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.0$, 18.5, 22.5, 22.7, 25.6, 27.2, 27.8, 29.3, 29.4, 31.5, 35.6, 79.7, $127.5,127.8,128.5,128.6,129.1,130.5,171.6 ; \mathrm{m} / \mathrm{z}$ (FAB) $327\left(\mathrm{M}+\mathrm{Na}^{+}, 100\right)$, 305 (90) [Found (HRMS): $\mathrm{M}+\mathrm{Na}^{+}$, 327.2301. $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Na}$ requires $\mathrm{M}+\mathrm{Na}^{+}$, 327.2300]. (S)isomer 6: $[a]_{\mathrm{D}}^{20}=+36.0\left(c 1.03, \mathrm{CHCl}_{3}\right)$.

Acknowledgements

We measured the 400 MHz NMR data at the Advanced Instrumentation Center for Chemical Analysis, Ehime University. We thank the staff of NMR and MS Operation Center in Faculty of Pharmaceutical Science at Fukuoka University for FABMS measurements. We are grateful to Marutomo Co. for financial support.

References

1 S. Durand, J.-L. Parrain and M. Santelli, J. Chem. Soc., Perkin Trans. 1, 2000, 253
2 S. P. Khanapure, X.-X. Shi, W. S. Powell and J. Rokach, J. Org. Chem., 1998, 63, 337.
3 S. Servi, Synthesis, 1990, 1
4 M. Utaka, T. Sakai and S. Tsuboi, J. Syn. Org. Chem. Jpn., 1991, 49, 647
5 D. Buisson and R. Azerad, Tetrahedron Lett., 1986, 27, 2631.
6 S. Hashimoto, Y. Miyazaki and S. Ikegami, Synth. Commun., 1992, 22, 2717.
7 A. J. Irwin and J. B. Jones, J. Am. Chem. Soc., 1977, 99, 1625.
8 S. K. Chaudhary and O. Hernandez, Tetrahedron Lett., 1979, 99.
9 F. Delay and G. Ohloff, Helv. Chim. Acta, 1979, 62, 2168.

